z-logo
open-access-imgOpen Access
Target depth-regularized reconstruction in diffuse optical tomography using ultrasound segmentation as prior information
Author(s) -
Menghao Zhang,
K. M. Shihab Uddin,
Shuying Li,
Quing Zhu
Publication year - 2020
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.388816
Subject(s) - diffuse optical imaging , imaging phantom , artificial intelligence , computer science , iterative reconstruction , ultrasound , tomography , segmentation , breast imaging , computer vision , optics , prior probability , breast cancer , biomedical engineering , pattern recognition (psychology) , mammography , physics , medicine , cancer , acoustics , bayesian probability
Ultrasound (US)-guided diffuse optical tomography (DOT) is a promising non-invasive functional imaging technique for diagnosing breast cancer and monitoring breast cancer treatment response. However, because larger lesions are highly absorbing, reconstructions of these lesions using reflection geometry may exhibit light shadowing, which leads to inaccurate quantification of their deeper portions. Here we propose a depth-regularized reconstruction algorithm combined with a semi-automated interactive neural network (CNN) for depth-dependent reconstruction of absorption distribution. CNN segments co-registered US to extract both spatial and depth priors, and the depth-regularized algorithm incorporates these parameters into the reconstruction. Through simulation and phantom data, the proposed algorithm is shown to significantly improve the depth distribution of reconstructed absorption maps of large targets. Evaluated with 26 patients with larger breast lesions, the algorithm shows 2.4 to 3 times improvement in the top-to-bottom reconstructed homogeneity of the absorption maps for these lesions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom