
High-throughput, volumetric quantitative phase imaging with multiplexed intensity diffraction tomography
Author(s) -
Alex Matlock,
Lei Tian
Publication year - 2019
Publication title -
biomedical optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.10.006432
Subject(s) - computer science , throughput , biological imaging , multiplexing , data acquisition , tomography , optics , iterative reconstruction , computer hardware , computer vision , physics , telecommunications , wireless , fluorescence , operating system
Intensity diffraction tomography (IDT) provides quantitative, volumetric refractive index reconstructions of unlabeled biological samples from intensity-only measurements. IDT is scanless and easily implemented in standard optical microscopes using an LED array but suffers from large data requirements and slow acquisition speeds. Here, we develop multiplexed IDT (mIDT), a coded illumination framework providing high volume-rate IDT for evaluating dynamic biological samples. mIDT combines illuminations from an LED grid using physical model-based design choices to improve acquisition rates and reduce dataset size with minimal loss to resolution and reconstruction quality. We analyze the optimal design scheme with our mIDT framework in simulation using the reconstruction error compared to conventional IDT and theoretical acquisition speed. With the optimally determined mIDT scheme, we achieve hardware-limited 4Hz acquisition rates enabling 3D refractive index distribution recovery on live Caenorhabditis elegans worms and embryos as well as epithelial buccal cells. Our mIDT architecture provides a 60 × speed improvement over conventional IDT and is robust across different illumination hardware designs, making it an easily adoptable imaging tool for volumetrically quantifying biological samples in their natural state.