
Automated retinal microvascular velocimetry based on erythrocyte mediated angiography
Author(s) -
Dongyi Wang,
Ayman Haytham,
Lakyn Mayo,
Yang Tao,
Osamah Saeedi
Publication year - 2019
Publication title -
biomedical optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.10.003681
Subject(s) - velocimetry , blood flow , retinal , computer science , laser doppler velocimetry , optics , medicine , radiology , ophthalmology , physics
Retinal blood flow is an emerging biomarker in ocular and systemic disease. Erythrocyte mediated angiography (EMA) is a novel technique that provides an easily interpretable blood flow velocity quantification by directly tracing individual moving erythrocyte ghosts over time in vivo, imaged using a scanning laser ophthalmoscope (Heidelberg Retina Angiograph platform). This tracking procedure, however, requires time-consuming manual analysis to determine blood flow. To overcome this current bottleneck, we developed an objective and automated velocimetry approach, EMA - Automated Velocimetry (EMA-AV), which is based on a modified sequential Monte Carlo method. The intra-class correlation coefficient (ICC) between trained human graders and EMA-AV is 0.98 for mean vessel velocity estimation and 0.92 for frame by frame erythrocyte velocity estimation. This study proves EMA-AV is a reliable tool for quantification of retinal microvascular velocity and flow and establishes EMA-AV as a reliable and interpretable tool for quantifying retinal microvascular velocity.