z-logo
open-access-imgOpen Access
Multimodal endoscopy for colorectal cancer detection by optical coherence tomography and near-infrared fluorescence imaging
Author(s) -
Yan Li,
Zhikai Zhu,
Jason J. Chen,
Joseph Jing,
Carlos Sun,
Sehwan Kim,
PhilSang Chung,
Zhongping Chen
Publication year - 2019
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.10.002419
Subject(s) - optical coherence tomography , colorectal cancer , colonoscopy , medicine , fluorescence lifetime imaging microscopy , pathology , radiology , medical imaging , endoscopy , preclinical imaging , cancer , fluorescence , biomedical engineering , in vivo , optics , biology , physics , microbiology and biotechnology
While colonoscopy is the gold standard for diagnosis and classification of colorectal cancer (CRC), its sensitivity and specificity are operator-dependent and are especially poor for small and flat lesions. Contemporary imaging modalities, such as optical coherence tomography (OCT) and near-infrared (NIR) fluorescence, have been investigated to visualize microvasculature and morphological changes for detecting early stage CRC in the gastrointestinal (GI) tract. In our study, we developed a multimodal endoscopic system with simultaneous co-registered OCT and NIR fluorescence imaging. By introducing a contrast agent into the vascular network, NIR fluorescence is able to highlight the cancer-suspected area based on significant change of tumor vascular density and morphology caused by angiogenesis. With the addition of co-registered OCT images to reveal subsurface tissue layer architecture, the suspected regions can be further investigated by the altered light scattering resulting from the morphological abnormality. Using this multimodal imaging system, an in vivo animal study was performed using a F344-Apc Pirc Uwm rat, in which the layered architecture and microvasculature of the colorectal wall at different time points were demonstrated. The co-registered OCT and NIR fluorescence images allowed the identification and differentiation of normal colon, hyperplastic polyp, adenomatous polyp, and adenocarcinoma. This multimodal imaging strategy using a single imaging probe has demonstrated the enhanced capability of identification and classification of CRC compared to using any of these technologies alone, thus has the potential to provide a new clinical tool to advance gastroenterology practice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here