
Sparse sampling and reconstruction for an optoacoustic ultrasound volumetric hand-held probe
Author(s) -
Mohammad Azizian Kalkhoran,
Didier Vray
Publication year - 2019
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.10.001545
Subject(s) - computer science , ultrasonic sensor , ultrasound , spiral (railway) , artificial intelligence , medical imaging , iterative reconstruction , computer vision , optics , acoustics , mathematics , physics , mathematical analysis
Accurate anatomical localization of functional information is the main goal of hybridizing optoacoustic and ultrasound imaging, with the promise of early stage diagnosis and disease pathophysiology. Optoacoustic integration to ultrasound is a relatively mature technique for clinical two-dimensional imaging, however the complexity of biological samples places particular demands for volumetric measurement and reconstruction. This integration is a multi-fold challenge that is mainly associated with the system geometry, the sampling and beam quality. In this study, we evaluated the design geometry for the sparse ultrasonic hand-held probe that is popularly associated with three-dimensional imaging of anatomical deformation, to incorporate the three-dimensional optoacoustic physiological information. We explored the imaging performance of three unconventional annular geometries; namely, segmented, spiral, and circular geometries. To avoid bias evaluation, two classes of analytical and model-based algorithms were used. The superior performance of the segmented annular array for recovery of the true object is demonstrated. Along with the model-based approach, this geometry offers spatial invariant resolution for the optoacoustic mode for the given field of view.The analytical approach, on the other hand, is computationally less expensive and is the method of choice for ultrasound imaging. Our design can potentially evolve into a valuable diagnostic tool, particularly for vascular-related disease.