
Dynamic optical coherence tomography imaging of the lacrimal passage with an extrinsic contrast agent
Author(s) -
Reiko Yoshimura,
Daeyoung Choi,
Masahiro Fujimoto,
Akihito Uji,
Fumiko Hiwatashi,
Kohji Ohbayashi
Publication year - 2019
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.10.001482
Subject(s) - optical coherence tomography , lumen (anatomy) , segmentation , optics , contrast (vision) , biomedical engineering , computer science , medicine , computer vision , physics , surgery
Recently, in vivo trans-conjunctiva optical coherence tomography (OCT) imaging of the lacrimal passage was demonstrated using a turbid commercial eye drop as an extrinsic contrast agent. However, static OCT images are not sufficient to unambiguously delineate the lumen boundary to render 3D lumen images of the lacrimal passage by segmentation. The turbid eye drop is expected to include small particles that flow and undergo Brownian motion and can be used as an extrinsic contrast agent for dynamic OCT. We conducted dynamic OCT measurements of the lacrimal passage using a swept source OCT system. Firstly, characterization of the dynamic OCT properties of the eye drop was performed. For improved delineation of the lumen boundary, we calculated the sum of the squared differences of intensities with two different normalization parameters. By making composite color images from OCT images and these two dynamic OCT images, we could execute unambiguous segmentation of the lumen of the lacrimal passage. Three-dimensional volumetric images of parts of the lacrimal passage, i.e., lacrimal canaliculus and lacrimal punctum, are demonstrated.