Patterned liquid crystal polymer C-plate retarder and color polarizer
Author(s) -
Sawyer Miller,
Linan Jiang,
Xingzhou Tu,
Stanley Pau
Publication year - 2021
Publication title -
applied optics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.668
H-Index - 197
eISSN - 2155-3165
pISSN - 1559-128X
DOI - 10.1364/ao.416845
Subject(s) - polarizer , retarder , materials science , optics , waveplate , photolithography , dichroic glass , angle of incidence (optics) , liquid crystal , polishing , optoelectronics , birefringence , composite material , laser , physics
The patternability and guest-host interaction with dichroic dye and C-plate liquid crystal polymer (LCP) materials are investigated, and the optical properties of a thin film C-plate retarder and polarizer are studied and compared with theory. The C-plate retarder is a waveplate made of a uniaxial LCP where the optical axis of the LCP is parallel to the surface normal of the optic. No retardance is observed at a normal angle of incidence and retardance grows as the angle of incidence increases. The C-plate polarizer is a C-plate retarder with LCP as the host and a dichroic dye as the guest. The linear diattenuation (LD) of the linear polarizer is zero at a normal angle of incidence and grows with an increasing angle of incidence. Both the C-plate retarder and polarizer can be patterned with minimum feature size down to 2 µm by using ultraviolet photolithography and plasma etching. A planarization process is also developed to deposit a cover layer on top of the pattern to reduce optical loss and to serve as a barrier for subsequent layers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom