
Blue noise coding for a coherent x-ray diffraction imaging system
Author(s) -
Zhaohong Fang,
Xu Ma,
Carlos M. Restrepo,
Gonzalo R. Arce
Publication year - 2021
Publication title -
applied optics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.668
H-Index - 197
eISSN - 2155-3165
pISSN - 1559-128X
DOI - 10.1364/ao.416226
Subject(s) - optics , diffraction , initialization , computer science , ptychography , coding (social sciences) , phase retrieval , algorithm , physics , mathematics , fourier transform , statistics , quantum mechanics , programming language
Coded x-ray diffraction imaging (CXRDI) is an emerging computational imaging approach that aims to solve the phase retrieval problem in x-ray crystallography based on the intensity measurements of encoded diffraction patterns. Boolean coding masks (BCMs) with complementary structures have been used to modulate the diffraction pattern in CXRDI. However, the optimal spatial distribution of BCMs still remains an open problem to be studied in depth. Based on the spectral initialization criterion, we provide a theoretical proof for the premise that the optimal complementary BCMs should obey the blue noise distribution in the sense of mathematical expectation. In addition, the benefits of the blue noise coding strategy are assessed by a set of simulations, where better reconstruction quality is observed compared to the random BCMs and other complementary BCMs.