
Kilohertz frame rate snapshot hyperspectral imaging of metal reactive materials
Author(s) -
Milad Alemohammad,
Elliot R. Wainwright,
Jasper R. Stroud,
Timothy P. Weihs,
Mark A. Foster
Publication year - 2020
Publication title -
applied optics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.668
H-Index - 197
eISSN - 2155-3165
pISSN - 1559-128X
DOI - 10.1364/ao.402305
Subject(s) - hyperspectral imaging , frame rate , optics , snapshot (computer storage) , spectral imaging , materials science , wavelength , image resolution , computer science , spectrometer , imaging spectrometer , multispectral image , image processing , remote sensing , physics , artificial intelligence , geology , operating system , image (mathematics)
We demonstrate a kilohertz frame rate snapshot hyperspectral imaging system suitable for high-speed imaging, which we name snapshot hyperspectral imager for emission and reactions (SHEAR). This system splits the sensor of a single high-speed camera to simultaneously capture a conventional image and a spectrally sheared response of the scene under study. Given the small, point-source-like nature of burning metal micro-particles, the spectral response of the species is captured without the need for a slit, as is needed in conventional imaging spectrometers. We pair robust image registration techniques with sparse reconstruction algorithms to computationally disentangle overlapping spectra associated with many burning particles over the course of a combustion experiment. As a proof-of-concept experiment, representative physical vapor deposited Al:Zr composite particles are ignited, and their burn evolution is recorded at a frame rate of 2 kHz using this method. We demonstrate operation over two distinct wavelength ranges spanning hundreds of nanometers in wavelength and with sub-nanometer resolution. We are able to track hundreds of individual Al:Zr particles in a single high-speed video, providing ample statistics of burn time, temperature, and AlO emission timing in a high-throughput method. The demonstrated technology is high-throughput, flexible in wavelength, inexpensive, and relatively easy to implement, and provides a much needed tool for in situ composite metal fuel diagnostics.