z-logo
open-access-imgOpen Access
Convolutional neural network applied for nanoparticle classification using coherent scatterometry data
Author(s) -
Dmytro Kolenov,
D. Davidse,
JeanBenoît Le Cam,
Silvania F. Pereira
Publication year - 2020
Publication title -
applied optics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.668
H-Index - 197
eISSN - 2155-3165
pISSN - 1559-128X
DOI - 10.1364/ao.399894
Subject(s) - computer science , convolutional neural network , artificial intelligence , thresholding , python (programming language) , artificial neural network , feature extraction , deep learning , pattern recognition (psychology) , network architecture , optics , physics , computer security , image (mathematics) , operating system
The analysis of 2D scattering maps generated in scatterometry experiments for detection and classification of nanoparticles on surfaces is a cumbersome and slow process. Recently, deep learning techniques have been adopted to avoid manual feature extraction and classification in many research and application areas, including optics. In the present work, we collected experimental datasets of nanoparticles deposited on wafers for four different classes of polystyrene particles (with diameters of 40, 50, 60, and 80 nm) plus a background (no particles) class. We trained a convolutional neural network, including its architecture optimization, and achieved 95% accurate results. We compared the performance of this network to an existing method based on line-by-line search and thresholding, demonstrating up to a twofold enhanced performance in particle classification. The network is extended by a supervisor layer that can reject up to 80% of the fooling images at the cost of rejecting only 10% of original data. The developed Python and PyTorch codes, as well as dataset, are available online.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom