z-logo
Premium
Human Growth Hormone Locally Released in Bone Sites by Calcium‐Phosphate Biomaterial Stimulates Ceramic Bone Substitution Without Systemic Effects: A Rabbit Study
Author(s) -
Guicheux Jérôme,
Gauthier Olivier,
Aguado Eric,
Pilet Paul,
Couillaud Séverine,
Jegou Dominique,
Daculsi Guy,
Heymann Dominique
Publication year - 1998
Publication title -
journal of bone and mineral research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 241
eISSN - 1523-4681
pISSN - 0884-0431
DOI - 10.1359/jbmr.1998.13.4.739
Subject(s) - calcium , bone resorption , biomaterial , in vivo , resorption , chemistry , biomedical engineering , endocrinology , medicine , biology , microbiology and biotechnology
Calcium‐phosphate bone replacement biomaterial has been used as a drug carrier for therapeutic agents. This study investigated the efficacy of local administration of human growth hormone (hGH) by macroporous biphasic calcium phosphate (MBCP) implants in improving the bone substitution qualities of ceramics. hGH release from MBCP implants loaded with 1 μg of hGH was rapid during the first 48 h and then sustained for a total of 9 days. Immunolocalization of hGH in vitro and in vivo by transmission electron microscopy showed its presence inside the material, indicating that it was able to penetrate within the porosity of the ceramic during the adsorption process. MBCP cylinders (6 × 6 mm) were loaded with 0.1, 1, and 10 μg of hGH and implanted into rabbit femurs ( n = 40). The effects of locally released hGH on bone ingrowth and ceramic resorption were evaluated by scanning electron microscopy and image analysis. The results indicated that hGH increased bone ingrowth (+65%) and ceramic resorption (+140%) significantly in comparison with control implants and that the increase was dose dependent. Biochemical parameters monitored in rabbit plasma and urine, as well as the absence of any significant difference between contralateral implants and the control, indicated that hGH did not produce detectable systemic effects. Thus, the use of MBCP appears to be effective for local delivery of hGH, resulting in improved bone substitution.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here