z-logo
Premium
Effects of PTH and Alendronate on Type I Collagen Isomerization in Postmenopausal Women With Osteoporosis: The PaTH Study
Author(s) -
Garnero Patrick,
Bauer Doug C,
Mareau Emmanuel,
Bilezikian John P,
Greenspan Susan L,
Rosen Clifford,
Black Dennis
Publication year - 2008
Publication title -
journal of bone and mineral research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 241
eISSN - 1523-4681
pISSN - 0884-0431
DOI - 10.1359/jbmr.080413
Subject(s) - osteoporosis , postmenopausal women , medicine , isomerization , endocrinology , type i collagen , chemistry , biochemistry , catalysis
Fracture efficacy of PTH and alendronate (ALN) is only partly explained by changes in BMD, and bone collagen properties have been suggested to play a role. We analyzed the effects of PTH(1–84) and ALN on urinary αα/ββ CTX ratio, a marker of type I collagen isomerization and maturation in postmenopausal women with osteoporosis. In the first year of the previously published PaTH study, postmenopausal women with osteoporosis were assigned to PTH(1–84) (100 μg/d; n = 119), ALN (10 mg/d; n = 60), or PTH and ALN together ( n = 59). We analyzed patients on ALN alone ( n = 60) and a similar number of patients assigned to PTH alone ( n = 63). During the second year, women on PTH in the first year were reallocated to placebo ( n = 31) or ALN ( n = 32) and women with ALN continued on ALN. During the first year, there was no significant change in αα/ββ CTX ratio with PTH or ALN. At 24 mo, there was a marked increase of the αα/ββ CTX ratio in women who had received PTH during the first year, followed by a second year of placebo (median: +45.5, p < 0.001) or ALN (+55.2%, p < 0.001). Conversely, the αα/ββ CTX ratio only slightly increased (+16%, p < 0.05) after 2 yr of continued ALN. In conclusion, treatment with PTH(1–84) for 1 yr followed by 1 yr of placebo or ALN may be associated with decreased type I collagen isomerization. The influence of these biochemical changes of type I collagen on bone fracture resistance remains to be studied.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom