Premium
In Vivo μMRI‐Based Finite Element and Morphological Analyses of Tibial Trabecular Bone in Eugonadal and Hypogonadal Men Before and After Testosterone Treatment
Author(s) -
Zhang X Henry,
Liu X Sherry,
Vasilic Branimir,
Wehrli Felix W,
Benito Maria,
Rajapakse Chamith S,
Snyder Peter J,
Guo X Edward
Publication year - 2008
Publication title -
journal of bone and mineral research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 241
eISSN - 1523-4681
pISSN - 0884-0431
DOI - 10.1359/jbmr.080405
Subject(s) - in vivo , testosterone (patch) , trabecular bone , medicine , orthodontics , biology , osteoporosis , microbiology and biotechnology
Osteoporosis is a major public health problem in men. Hypogonadal men have decreased BMD and deteriorated trabecular bone architecture compared with eugonadal men. Testosterone treatment improves their BMD and trabecular structure. We tested the hypothesis that testosterone replacement in hypogonadal men would also improve their bone's mechanical properties. Ten untreated severely hypogonadal and 10 eugonadal men were selected. The hypogonadal men were treated with a testosterone gel for 24 mo to maintain their serum testosterone concentrations within the normal range. Each subject was assessed before and after 6, 12, and 24 mo of testosterone treatment by μMRI of the distal tibia. A subvolume of each μMR image was converted to a microfinite element (μFE) model, and six analyses were performed, representing three compression and three shear tests. The anisotropic stiffness tensor was calculated, from which the orthotropic elastic material constants were derived. Changes in microarchitecture were also quantified using newly developed individual trabeculae segmentation (ITS)‐based and standard morphological analyses. The accuracy of these techniques was examined with simulated μMR images. Significant differences in four estimated anisotropic elastic material constants and most morphological parameters were detected between the eugonadal and hypogonadal men. No significant change in estimated elastic moduli and morphological parameters was detected in the eugonadal group over 24 mo. After 24 mo of treatment, significant increases in estimated elastic moduli E 22 (9.0%), E 33 (5.1%), G 23 (7.2%), and G 12 (9.4%) of hypogonadal men were detected. These increases were accompanied by significant increases in trabecular plate thickness. These results suggest that 24 mo of testosterone treatment of hypogonadal men improves estimated elastic moduli of tibial trabecular bone by increased trabecular plate thickness.