z-logo
Premium
Coherent psychometric modelling with Bayesian nonparametrics
Author(s) -
Karabatsos George,
Walker Stephen G.
Publication year - 2009
Publication title -
british journal of mathematical and statistical psychology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.157
H-Index - 51
eISSN - 2044-8317
pISSN - 0007-1102
DOI - 10.1348/000711007x246237
Subject(s) - nonparametric statistics , bayesian probability , computer science , model selection , bayesian statistics , econometrics , prior probability , machine learning , statistics , artificial intelligence , bayesian inference , mathematics
In this paper we argue that model selection, as commonly practised in psychometrics, violates certain principles of coherence. On the other hand, we show that Bayesian nonparametrics provides a coherent basis for model selection, through the use of a ‘nonparametric’ prior distribution that has a large support on the space of sampling distributions. We illustrate model selection under the Bayesian nonparametric approach, through the analysis of real questionnaire data. Also, we present ways to use the Bayesian nonparametric framework to define very flexible psychometric models, through the specification of a nonparametric prior distribution that supports all distribution functions for the inverse link, including the standard logistic distribution functions. The Bayesian nonparametric approach provides a coherent method for model selection that can be applied to any statistical model, including psychometric models. Moreover, under a ‘non‐informative’ choice of nonparametric prior, the Bayesian nonparametric approach is easy to apply, and selects the model that maximizes the log likelihood. Thus, under this choice of prior, the approach can be extended to non‐Bayesian settings where the parameters of the competing models are estimated by likelihood maximization, and it can be used with any psychometric software package that routinely reports the model log likelihood.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here