Premium
Beta‐binomial ANOVA for multivariate randomized response data
Author(s) -
Fox JeanPaul
Publication year - 2008
Publication title -
british journal of mathematical and statistical psychology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.157
H-Index - 51
eISSN - 2044-8317
pISSN - 0007-1102
DOI - 10.1348/000711007x226040
Subject(s) - randomized response , multivariate statistics , univariate , statistics , bayes' theorem , randomized experiment , beta binomial distribution , binomial test , negative binomial distribution , multivariate analysis of variance , multivariate analysis , econometrics , mathematics , computer science , bayesian probability , estimator , poisson distribution
There is much empirical evidence that randomized response methods improve the cooperation of the respondents when asking sensitive questions. The traditional methods for analysing randomized response data are restricted to univariate data and only allow inferences at the group level due to the randomized response sampling design. Here, a novel beta‐binomial model is proposed for analysing multivariate individual count data observed via a randomized response sampling design. This new model allows for the estimation of individual response probabilities (response rates) for multivariate randomized response data utilizing an empirical Bayes approach. A common beta prior specifies that individuals in a group are tied together and the beta prior parameters are allowed to be cluster‐dependent. A Bayes factor is proposed to test for group differences in response rates. An analysis of a cheating study, where 10 items measure cheating or academic dishonesty, is used to illustrate application of the proposed model.