Premium
Estimating the polychoric correlation from misclassified data
Author(s) -
Yiu ChoiFan,
Poon WaiYin
Publication year - 2008
Publication title -
british journal of mathematical and statistical psychology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.157
H-Index - 51
eISSN - 2044-8317
pISSN - 0007-1102
DOI - 10.1348/000711006x131136
Subject(s) - polychoric correlation , categorical variable , contingency table , polytomous rasch model , statistics , mathematics , ordinal data , standard error , econometrics , correlation , item response theory , psychometrics , geometry
Many variables that are used in social and behavioural science research are ordinal categorical or polytomous variables. When more than one polytomous variable is involved in an analysis, observations are classified in a contingency table, and a commonly used statistic for describing the association between two variables is the polychoric correlation. This paper investigates the estimation of the polychoric correlation when the data set consists of misclassified observations. Two approaches for estimating the polychoric correlation have been developed. One assumes that the probabilities in relation to misclassification are known, and the other uses a double sampling scheme to obtain information on misclassification. A parameter estimation procedure is developed, and statistical properties for the estimates are discussed. The practicability and applicability of the proposed approaches are illustrated by analysing data sets that are based on real and generated data. Excel programmes with visual basic for application (VBA) have been developed to compute the estimate of the polychoric correlation and its standard error. The use of the structural equation modelling programme Mx to find parameter estimates in the double sampling scheme is discussed.