z-logo
Premium
Predicting item exposure parameters in computerized adaptive testing
Author(s) -
Chen ShuYing,
Doong ShingHwang
Publication year - 2008
Publication title -
british journal of mathematical and statistical psychology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.157
H-Index - 51
eISSN - 2044-8317
pISSN - 0007-1102
DOI - 10.1348/000711006x129553
Subject(s) - computerized adaptive testing , multinomial distribution , item response theory , computer science , statistics , selection (genetic algorithm) , genetic programming , mathematics , artificial intelligence , psychometrics
The purpose of this study is to find a formula that describes the relationship between item exposure parameters and item parameters in computerized adaptive tests by using genetic programming (GP) – a biologically inspired artificial intelligence technique. Based on the formula, item exposure parameters for new parallel item pools can be predicted without conducting additional iterative simulations. Results show that an interesting formula between item exposure parameters and item parameters in a pool can be found by using GP. The item exposure parameters predicted based on the found formula were close to those observed from the Sympson and Hetter (1985) procedure and performed well in controlling item exposure rates. Similar results were observed for the Stocking and Lewis (1998) multinomial model for item selection and the Sympson and Hetter procedure with content balancing. The proposed GP approach has provided a knowledge‐based solution for finding item exposure parameters.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here