z-logo
open-access-imgOpen Access
The Influence of Temperature on the Strength of Hybrid Metal-Composite Multi-Bolts Joints
Author(s) -
Calin-Dumitru Coman
Publication year - 2020
Publication title -
incas buletin
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 10
eISSN - 2247-4528
pISSN - 2066-8201
DOI - 10.13111/2066-8201.2020.12.3.4
Subject(s) - materials science , composite number , structural engineering , finite element method , bolted joint , composite material , nonlinear system , composite laminates , shear (geology) , joint (building) , engineering , physics , quantum mechanics
This paper presents the temperature influence on the strength of the hybrid metal-composite multi-bolted joints. A detailed 3D finite element model, incorporating all possible nonlinearities as large deformations, in plane nonlinear shear deformations, elastic properties degradation of the composite material and friction-based full contact, is developed to anticipate the temperature changing effects on the progressive damage analysis (PDA) at lamina level and failure modes of metal-composite multi-bolted joints. The PDA material model accounts for lamina nonlinear shear deformation, Hashin-type failure criteria and strain-based continuum degradation rules being developed using the UMAT user subroutine in Nastran commercial software. In order to validate the temperature effects on the failure modes of the joint with protruding and countersunk bolts, experiments were conducted using the SHM (Structural Health Monitoring) technique in the temperature controlled chamber. The results showed that the temperature effects on damage initiation and failure modes have to be taken into account in the design process in order to fructify the high specific strength of the composites. Experimental results were quite accurately predicted by the PDA material model, which proved to be computational efficient and can predict failure propagation and damage mechanism in hybrid metal-composite multi-bolted joints.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here