z-logo
open-access-imgOpen Access
Mining Simple Path Traversal Patterns in Knowledge Graph
Author(s) -
Feng Xiong,
Hongzhi Wang
Publication year - 2022
Publication title -
journal of web engineering/journal of web engineering on line
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.151
H-Index - 13
eISSN - 1544-5976
pISSN - 1540-9589
DOI - 10.13052/jwe1540-9589.2128
Subject(s) - tree traversal , graph traversal , computer science , correctness , theoretical computer science , data mining , graph , representativeness heuristic , algorithm , mathematics , statistics
The data mining has remained a subject of unfailing charm for research. The knowledge graph is rising and showing infinite life force and strong developing potential in recent years, where it is observed that acyclic knowledge graph has capacity for enhancing usability. Though the development of knowledge graphs has provided an ample scope for appearing the abilities of data mining, related researches are still insufficient. In this paper, we introduce path traversal patterns mining to knowledge graph. We design a novel simple path traversal pattern mining framework for improving the representativeness of result. A divide-and-conquer approach of combining each path is proposed to discover the most frequent traversal patterns in knowledge graph. To support the algorithm, we design a linked list structure indexed by the length of sequences with handy operations. The correctness of algorithm is proven. Experiments show that our algorithm reaches a high coverage with low output amounts compared to existing frequent sequence mining algorithms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here