
A Novel Negative Sampling Based on Frequency of Relational Association Entities for Knowledge Graph Embedding
Author(s) -
Wanhua Cao,
Yi Zhang,
Juntao Liu,
Ziyun Rao
Publication year - 2021
Publication title -
journal of web engineering/journal of web engineering on line
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.151
H-Index - 13
eISSN - 1544-5976
pISSN - 1540-9589
DOI - 10.13052/jwe1540-9589.2068
Subject(s) - embedding , computer science , knowledge graph , relation (database) , data mining , graph , artificial intelligence , theoretical computer science , machine learning
Knowledge graph embedding improves the performance of relation extraction and knowledge reasoning by encoding entities and relationships in low-dimensional semantic space. During training, negative samples are usually constructed by replacing the head/tail entity. And the different replacing relationships lead to different accuracy of the prediction results. This paper develops a negative triplets construction framework according to the frequency of relational association entities. The proposed construction framework can fully consider the quantitative of relations and entities in the dataset to assign the proportion of relation and entity replacement and the frequency of the entities associated with each relationship to set reasonable proportions for different relations. To verify the validity of the proposed construction framework, it is integrated into the state-of-the-art knowledge graph embedding models, such as TransE, TransH, DistMult, ComplEx, and Analogy. And both the evaluation criteria of relation prediction and entity prediction are used to evaluate the performance of link prediction more comprehensively. The experimental results on two commonly used datasets, WN18 and FB15K, show that the proposed method improves entity link and triplet classification accuracy, especially the accuracy of relational link prediction.