z-logo
open-access-imgOpen Access
Security Improvement in Next Generation Wireless System by Interleaver in Transceiver Structures
Author(s) -
B. Partibane,
R. Kalidoss,
R. Karthipan
Publication year - 2017
Publication title -
journal of cyber security and mobility
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.198
H-Index - 9
eISSN - 2245-4578
pISSN - 2245-1439
DOI - 10.13052/2245-1439.641
Subject(s) - computer science , mimo , minimum mean square error , bit error rate , single antenna interference cancellation , space division multiple access , electronic engineering , decoding methods , telecommunications link , transmitter , algorithm , channel (broadcasting) , telecommunications , engineering , mathematics , statistics , estimator
This paper presents the multiple-input multiple-output Interleave division multiple access (MIMO-IDMA) system with dual polarized division multiplexing (DPDM). Dual polarized antenna system replaces the uni-polarized antenna system availing cost and space features. We have considered dual- Polarized antennas at both the transmitter and the receiver ends to establish DPDM. For the purpose of accommodation, the users are separated with userspecific interleaver in combination with a low rate spreading sequence. In the receiver, we consider the minimum mean square error (MMSE) algorithm based successive interference cancellation (SIC) Multi-user detection (MUD) technique to diminish the effects of multi-stream interference (MSI). Furthermore, we implement Log-maximum a posteriori probability (MAPP) decoding algorithm at the mobile stations (MSs) to alleviate the effects of multi-user interference (MUI).We evaluate the effects of codedMIMO-IDMA system in the context of downlink (DL) communication pertaining to the Stanford University Interim (SUI) and Long-term Evolution (LTE) channel model specifications.We observe that our simulation results considered turbo coded Dual-PolarizedMIMO-IDMAsystem with iterative decoding algorithm provides a better bit error rate (BER) performance with less signal to noise ratio (SNR) when compared to uncoded system. Furthermore our simulation results show that MIMO-IDMA system with Dual-Polarized antenna requires higher SNR than uni-polarized antennas in order to achieve same BER. However, it provides the advantage of replacing two uni-polarized antennas by a single Dual-Polarized antenna which can therefore help achievement of a higher data rate with a reduced size of MS in the context of DL transmission.  

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here