
A Compact and High-Performance Shielding Enclosure by Using Metamaterial Design
Author(s) -
Keyi Cui,
Dan Shi,
ChiaLiang Sun,
Xiaoyong Liu
Publication year - 2021
Publication title -
applied computational electromagnetics society journal
Language(s) - English
Resource type - Journals
eISSN - 1943-5711
pISSN - 1054-4887
DOI - 10.13052/2021.aces.j.361113
Subject(s) - electromagnetic shielding , enclosure , metamaterial , attenuation , materials science , bandwidth (computing) , shield , polarization (electrochemistry) , acoustics , optoelectronics , optics , electrical engineering , physics , computer science , engineering , telecommunications , composite material , petrology , chemistry , geology
A compact and high-performance shielding enclosure designed by metamaterial structure based on frequency selective surface (FSS) is proposed. The enclosure has large holes for convenience of airflow and cable access. However, it can achieve great shielding performance by maintaining more than 40 dB attenuation. The shield is composed of n ×× n unit cells, and each unit cell is designed by knitting the 2.5-dimensional loop-type elements interconnected through vias. This design shows promising capability of size reduction, bandwidth expansion, and shielding effectiveness enhancement. Moreover, the enlarged holes on the FSS are helpful for the ventilation and heat dissipation. The size of the proposed 2.5-D FSS is only 0.097λ0λ0××0.097λ0λ0, where λ0λ0 corresponds to free space wavelength of resonance frequency. The proposed structure provides 3.38 GHz (3.21–6.59 GHz) wide shielding bandwidth. Furthermore, it has stable response to the wide-angle incident wave ranging from 0∘∘ to 85∘∘ with more than 40 dB attenuation at 4.83 GHz for both x-polarization and y-polarization. The proposed FSS is practically useful for the shielding of fifth generation (5G) wireless systems, WiMAX, and WLAN.