z-logo
open-access-imgOpen Access
The pathobiology and pathology of aseptic implant failure
Author(s) -
Nick Athanasou
Publication year - 2016
Publication title -
bone and joint research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.639
H-Index - 31
ISSN - 2046-3758
DOI - 10.1302/2046-3758.55.bjr-2016-0086
Subject(s) - periprosthetic , implant , medicine , implant failure , immune system , osteolysis , inflammation , pathology , chemokine , immunology , surgery , arthroplasty
Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles. Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure. Bone Joint Res 2016;5:162–168. DOI: 10.1302/2046-3758.55.BJR-2016-0086.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here