z-logo
open-access-imgOpen Access
Nutrient Limitation and Uptake Rates in Streams and Rivers of the Greater Yellowstone Ecosystem
Author(s) -
Jennifer L. Tank,
Alexander J. Reisinger
Publication year - 2013
Publication title -
annual report
Language(s) - English
Resource type - Journals
eISSN - 2693-2407
pISSN - 2693-2385
DOI - 10.13001/uwnpsrc.2013.4011
Subject(s) - streams , nutrient , environmental science , water column , water quality , ecosystem , nutrient pollution , aquatic ecosystem , ecology , hydrology (agriculture) , biology , geology , computer network , geotechnical engineering , computer science
Nutrient pollution of aquatic ecosystems is a growing concern as the influence of human activities continues to increase on the landscape. Headwater streams have long been shown to process nutrients via the biofilm community growing on the bottom of streams. The growth and activity of these biofilms is often limited by the availability of nitrogen (N), phosphorus (P), or co-limited by both N and P. Although small stream nutrient dynamics are relatively well understood, comparatively little is known about larger, non-wadeable rivers. Biofilms on the river bottom are likely still nutrient limited, but there becomes an increased potential for light limitation as rivers increase in depth. In addition to biofilms on the bottom of rivers, free-living microbial communities suspended in the water column also occur in rivers and process nutrients - a component of nutrient processing largely ignored in streams. In summer 2013 we worked in streams and rivers of the Greater Yellowstone Area (GYA) to establish the nutrient limitation status of minimally-impacted rivers, as well as the role of the water column in processing nutrients as streams increase in size. For both the nutrient limitation and water column uptake studies, we are using the GYA sites in addition to systems from other regions of the US to establish what controls the various aspects of nutrient dynamics in rivers. Our results from the GYA, in addition to Midwest and Southwest US rivers, will provide water quality managers with new strategies for improving water quality downstream, and clarify mechanisms controlling nutrient retention in rivers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here