
Multilevel symmetrized Toeplitz structures and spectral distribution results for the related matrix sequences
Author(s) -
Paola Ferrari,
Isabella Furci,
Stefano SerraCapizzano
Publication year - 2021
Publication title -
the electronic journal of linear algebra
Language(s) - English
Resource type - Journals
eISSN - 1537-9582
pISSN - 1081-3810
DOI - 10.13001/ela.2021.5775
Subject(s) - toeplitz matrix , mathematics , matrix (chemical analysis) , singular value , matrix function , combinatorics , identity matrix , symmetrization , sequence (biology) , locally integrable function , pure mathematics , symmetric matrix , integrable system , eigenvalues and eigenvectors , physics , materials science , quantum mechanics , biology , composite material , genetics
In recent years, motivated by computational purposes, the singular value and spectral features of the symmetrization of Toeplitz matrices generated by a Lebesgue integrable function have been studied. Indeed, under the assumptions that $f$ belongs to $L^1([-\pi,\pi])$ and it has real Fourier coefficients, the spectral and singular value distribution of the matrix-sequence $\{Y_nT_n[f]\}_n$ has been identified, where $n$ is the matrix size, $Y_n$ is the anti-identity matrix, and $T_n[f]$ is the Toeplitz matrix generated by $f$. In this note, the authors consider the multilevel Toeplitz matrix $T_{\bf n}[f]$ generated by $f\in L^1([-\pi,\pi]^k)$, $\bf n$ being a multi-index identifying the matrix-size, and they prove spectral and singular value distribution results for the matrix-sequence $\{Y_{\bf n}T_{\bf n}[f]\}_{\bf n}$ with $Y_{\bf n}$ being the corresponding tensorization of the anti-identity matrix.