z-logo
open-access-imgOpen Access
Techniques for determining equality of the maximum nullity and the zero forcing number of a graph
Author(s) -
Derek Young
Publication year - 2021
Publication title -
the electronic journal of linear algebra
Language(s) - English
Resource type - Journals
eISSN - 1537-9582
pISSN - 1081-3810
DOI - 10.13001/ela.2021.4967
Subject(s) - mathematics , combinatorics , adjacency matrix , distance regular graph , graph , upper and lower bounds , discrete mathematics , line graph , voltage graph , graph energy , regular graph , mathematical analysis
It is known that the zero forcing number of a graph is an upper bound for the maximum nullity of the graph (see [AIM Minimum Rank - Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S. Cioab$\breve{\text{a}}$, D. Cvetkovi$\acute{\text{c}}$, S. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanovi$\acute{\text{c}}$, H. van der Holst, K. Vander Meulen, and A. Wangsness). Linear Algebra Appl., 428(7):1628--1648, 2008]). In this paper, we search for characteristics of a graph that guarantee the maximum nullity of the graph and the zero forcing number of the graph are the same by studying a variety of graph parameters that give lower bounds on the maximum nullity of a graph. Inparticular, we introduce a new graph parameter which acts as a lower bound for the maximum nullity of the graph. As a result, we show that the Aztec Diamond graph's maximum nullity and zero forcing number are the same. Other graph parameters that are considered are a Colin de Verdiére type parameter and vertex connectivity. We also use matrices, such as a divisor matrix of a graph and an equitable partition of the adjacency matrix of a graph, to establish a lower bound for the nullity of the graph's adjacency matrix.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here