Open Access
Limit Load Solution for Thin-Walled Cylinder with Circumferential Crack under Combined Internal Pressure, Axial Force, Bending Moment and Torsion Moment
Author(s) -
S. Arun,
Wichaphon Fakkaew,
Thongchai Fongsamootr
Publication year - 2022
Publication title -
warasan khana witthayasat maha witthayalai chiang mai
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.164
H-Index - 20
ISSN - 0125-2526
DOI - 10.12982/cmjs.2022.005
Subject(s) - internal pressure , bending moment , torsion (gastropod) , von mises yield criterion , limit load , cylinder , moment (physics) , structural engineering , mechanics , materials science , finite element method , mathematics , physics , composite material , classical mechanics , geometry , engineering , medicine , surgery
T his research aims to establish the limit load solution for thin-walled cylinder with circumferential crack under combined internal pressure, axial force, bending moment and torsion moment. The solution is derived based on the net-section collapse principle and the von Mises yield criterion. The material considered in this work is assumed to be elastic-perfectly plastic. The solutions obtained from this work are compared with the results from the finite element models. The comparison shows that the equations established from NSC analysis provide acceptable results for the case of cracked cylinder under combined axial force and bending moment. For the case of cylinder subjected to internal pressure or torsional moment, however, these equations can be used to predict the limit load only if np ≤ 0.40 and nT ≤ 0.6 . This is because when the effects of internal pressure or torsional moment are included, the distribution of stresses on the crack plane at the yielding does not correspond to the NSC principal.