z-logo
open-access-imgOpen Access
Life Cycle Assessment of Secondary Mangrove Forest in Bintuni Bay,West Papua, Indonesia
Author(s) -
Rocky Marius Q. de Ramos,
Michael Lochinvar S. Abundo,
Evelyn B. Taboada
Publication year - 2017
Publication title -
current world environment
Language(s) - English
Resource type - Journals
eISSN - 2320-8031
pISSN - 0973-4929
DOI - 10.12944/cwe.12.3.13
Subject(s) - mangrove , woodchips , environmental science , renewable energy , bay , life cycle assessment , logging , bioenergy , waste management , environmental protection , forestry , production (economics) , engineering , geography , ecology , biology , civil engineering , electrical engineering , macroeconomics , economics
The life cycle assessment is conducted in order to assess the impact of mangrove woodchip production in Bintuni bay, West Papua Indonesia on the environment. Study includes the analysis of non-renewable energy use (MJ), global warming potential or carbon footprint (kg CO2), acidification potential (kg SO2) and ozone creation potential (kg O3) of mangrove logging, processing and shipment. Mangrove woodchip production consumes 960 MJ of non-renewable energy and gives out 59.59 kg CO2, .383 kg SO2 and 30.39 kg O3, which is the lowest in comparison with other wood products. Mangrove processing incur less fuel because it is delivered in bulk to the processing area via barges in comparison to other wood products The current shipping of mangrove woodchips to customers has the greatest environmental impact because of the use of bunker fuel. The processing of mangrove woodchips used diesel exclusively for fuel in its power sources. Forest residues from logging can be a source of renewable fuel and may also be another source of new products.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom