z-logo
open-access-imgOpen Access
Mini- and microsatellites.
Author(s) -
Claes Ramel
Publication year - 1997
Publication title -
environmental health perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.97105s4781
Subject(s) - minisatellite , biology , telomere , telomerase , genetics , microsatellite , repeated sequence , dna , trinucleotide repeat expansion , human genome , germline , chromosomal fragile site , dna sequencing , base pair , centromere , genome , chromosome , allele , gene
While the faithful transmission of genetic information requires a fidelity and stability of DNA that is involved in translation into proteins, it has become evident that a large part of noncoding DNA is organized in repeated sequences, which often exhibit a pronounced instability and dynamics. This applies both to longer repeated sequences, minisatellites (about 10-100 base pairs), and microsatellites (mostly 2-4 base pairs). Although these satellite DNAs are abundantly distributed in all kinds of organisms, no clear function has been discerned for them. However, extension of trinucleotide microsatellite sequences has been associated with several severe human disorders, such as Fragile X syndrome and Huntington's disease. Rare alleles of a minisatellite sequence have been reported to be associated with the ras oncogene leading to an increased risk for several human cancers. A dynamic behavior of repeated DNA sequences also applies to telomeres, constituting the ends of the chromosomes. Repeated DNA sequences protect the chromosome ends from losing coding sequences at cell divisions. The telomeres are maintained by the enzyme telomerase. Somatic cells, however, lose telomerase function and gradually die. Cancer cells have activated telomerase and therefore they acquire immortality.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here