z-logo
open-access-imgOpen Access
Animal models of beryllium-induced lung disease.
Author(s) -
Gregory L. Finch,
Mark D. Hoover,
Fletcher F. Hahn,
Kristen J. Nikula,
Steven A. Belinsky,
Patrick J. Haley,
William C. Griffith
Publication year - 1996
Publication title -
environmental health perspectives
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.96104s5973
Subject(s) - lung , pathology , inhalation , lung cancer , inhalation exposure , medicine , beagle , interstitial lung disease , pneumonia , immunology , respiratory disease , anatomy
The inhalation Toxicology Research Institute (ITRI) is conducting research to improve the understanding of chronic beryllium disease (CBD) and beryllium-induced lung cancer. Initial animal studies examined beagle dogs that inhaled BeO calcined at either 500 or 1000 degrees C. At similar lung burdens, the 500 degrees C BeO induced more severe and extensive granulomatous pneumonia, lymphocytic infiltration into the lung, and positive Be-specific lymphocyte proliferative responses in vitro than the 1000 degrees C BeO. However, the progressive nature of human CBD was not duplicated. More recently, Strains A/J and C3H/Hej mice were exposed to Be metal by inhalation. This produced a marked granulomatous pneumonia, diffuse infiltrates, and multifocal aggregates of interstitial lymphocytes with a pronounced T helper component and pulmonary in situ lymphocyte proliferation. With respect to lung cancer, at a mean lung burden as low as 17 micrograms Be/g lung, inhaled Be metal induced benign and/or malignant lung tumors in over 50% of male and female F344 rats surviving > or = 1 year on study. Substantial tumor multiplicity was found, but K-ras and p53 gene mutations were virtually absent. In mice, however, a lung burden of approximately 60 micrograms (-300 micrograms Be/g lung) caused only a slight increase in crude lung tumor incidence and multiplicity over controls in strain A/J mice and no elevated incidence in strain C3H mice. Taken together, this research program constitutes a coordinated effort to understand beryllium-induced lung disease in experimental animal models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here