z-logo
open-access-imgOpen Access
Airway epithelial cell responses to ozone injury.
Author(s) -
George D. Leikauf,
Lin Simpson,
Jeffrey Santrock,
Qiyu Zhao,
Joan M. Abbinante-Nissen,
Shaoying Zhou,
Kevin E. Driscoll
Publication year - 1995
Publication title -
environmental health perspectives
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.95103s291
Subject(s) - chemokine , respiratory epithelium , neutrophil elastase , epithelium , mucus , chemistry , microbiology and biotechnology , cytokine , immunology , elastase , eosinophil , interleukin 8 , inflammation , biology , biochemistry , enzyme , ecology , genetics , asthma
The airway epithelial cells is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products--hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines--macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretory leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here