
Oxygen-derived species: their relation to human disease and environmental stress.
Author(s) -
Barry Halliwell,
Carroll E. Cross
Publication year - 1994
Publication title -
environmental health perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.94102s105
Subject(s) - oxidative stress , reactive oxygen species , dna damage , antioxidant , chemistry , reactive nitrogen species , oxidative phosphorylation , oxygen , biochemistry , microbiology and biotechnology , biology , dna , organic chemistry
Free radicals and other reactive oxygen species (ROS) are constantly formed in the human body, often for useful metabolic purposes. Antioxidant defenses protect against them, but these defenses are not completely adequate, and systems that repair damage by ROS are also necessary. Mild oxidative stress often induces antioxidant defense enzymes, but severe stress can cause oxidative damage to lipids, proteins, and DNA within cells, leading to such events as DNA strand breakage and disruption of calcium ion metabolism. Oxidative stress can result from exposure to toxic agents, and by the process of tissue injury itself. Ozone, oxides of nitrogen, and cigarette smoke can cause oxidative damage; but the molecular targets that they damage may not be the same.