Premium
Tuning fork decay
Author(s) -
Miller Gale W.
Publication year - 1979
Publication title -
the laryngoscope
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.181
H-Index - 148
eISSN - 1531-4995
pISSN - 0023-852X
DOI - 10.1288/00005537-197903000-00014
Subject(s) - tuning fork , fork (system call) , audiometer , acoustics , vibration , time constant , physics , engineering , audiometry , electrical engineering , structural engineering , hearing loss , medicine , audiology
Tuning fork tests are used routinely by many otologists. A different group of otologists find the tests inconsistent and unreliable. This controversy has probably developed because the audiometer has replaced the tuning fork in hearing measurement. As a result, the art of use of the tuning fork is poorly learned. This study examines decay, one of the physical parameters of tuning forks. Measurements of acoustic (sound wave) and vibration (stem movement) decay were made. Alteration in decay due to pressure changes on the fork stem were studied. Acoustic signals were generated in an anechoic chamber. Vibration measurements were obtained using an artificial mastoid. Analysis of the signals was accomplished by a system of amplifiers, filters, tape recorders, and a graphic recorder. Tuning fork sound decay is a property of the instrument which occurs every time the fork is struck. The decay is a constant in decibels per second. The acoustic mode and the vibration mode decay at similar rates for the same fork. The strike frequency (a higher frequency than the fundamental produced when the fork is struck) also has a constant decay rate in decibels per second, and it is reported here for the first time. Force of 800 gm. and less applied to the bottom of the stem in vibration measurement caused minimal decay constant changes. When the physical parameters of the tuning fork (including this information on damping) are fully studied, tuning fork testing should become more of a science and less of an art.