
A three solutions theorem for Pucci's extremal operator and its application
Author(s) -
Mohan Mallick,
Ram Baran Verma
Publication year - 2021
Publication title -
topological methods in nonlinear analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.623
H-Index - 23
ISSN - 1230-3429
DOI - 10.12775/tmna.2020.066
Subject(s) - sublinear function , mathematics , omega , domain (mathematical analysis) , bounded function , lambda , operator (biology) , combinatorics , boundary (topology) , type (biology) , discrete mathematics , mathematical analysis , physics , quantum mechanics , ecology , biochemistry , chemistry , repressor , biology , transcription factor , gene
In this article we prove a three solution type theorem for the following boundary value problem: \begin{equation*} \label{abs} \begin{cases} -\mathcal{M}_{\lambda,\Lambda}^+(D^2u) =f(u)& \text{in }\Omega,\\ u =0& \text{on }\partial\Omega, \end{cases} \end{equation*} where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$ and $f\colon [0,\infty]\to[0,\infty]$ is a $C^{\alpha}$ function. This is motivated by the work of Amann \cite{aman} and Shivaji \cite{shivaji1987remark}, where a three solutions theorem has been established for the Laplace operator. Furthermore, using this result we show the existence of three positive solutions to above boundary value by explicitly constructing two ordered pairs of sub and supersolutions when $f$ has a sublinear growth and $f(0)=0.$