z-logo
open-access-imgOpen Access
Solutions to indefinite weakly coupled cooperative elliptic systems
Author(s) -
Mónica Clapp,
Andrzej Szulkin
Publication year - 2021
Publication title -
topological methods in nonlinear analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.623
H-Index - 23
ISSN - 1230-3429
DOI - 10.12775/tmna.2020.052
Subject(s) - lambda , combinatorics , domain (mathematical analysis) , omega , mathematics , bounded function , state (computer science) , kappa , dirichlet distribution , physics , mathematical analysis , geometry , quantum mechanics , boundary value problem , algorithm
We study the elliptic system \begin{equation*} \begin{cases} -\Delta u_1 - \kappa_1u_1 = \mu_1|u_1|^{p-2}u_1 + \lambda\alpha|u_1|^{\alpha-2}|u_2|^\beta u_1, \\ -\Delta u_2 - \kappa_2u_2 = \mu_2|u_2|^{p-2}u_2 + \lambda\beta|u_1|^\alpha|u_2|^{\beta-2}u_2, \\ u_1,u_2\in D^{1,2}_0(\Omega), \end{cases} \end{equation*} where $\Omega$ is a bounded domain in $\mathbb R^N$, $N\geq 3$, $\kappa_1,\kappa_2\in\mathbb R$, $\mu_1,\mu_2,\lambda> 0$, $\alpha,\beta> 1$, and $\alpha + \beta = p\le 2^*:={2N}/({N-2})$. For $p\in (2,2^*)$ we establish the existence of a ground state and of a prescribed number of fully nontrivial solutions to this system for $\lambda$ sufficiently large. If $p=2^*$ and $\kappa_1,\kappa_2> 0$ we establish the existence of a ground state for $\lambda$ sufficiently large if, either $N\ge5$, or $N=4$ and neither $\kappa_1$ nor $\kappa_2$ are Dirichlet eigenvalues of $-\Delta$ in $\Omega$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here