z-logo
open-access-imgOpen Access
Bisection of measures on spheres and a fixed point theorem
Author(s) -
M. C. Crabb
Publication year - 2021
Publication title -
topological methods in nonlinear analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.623
H-Index - 23
ISSN - 1230-3429
DOI - 10.12775/tmna.2020.047
Subject(s) - mathematics , orbifold , hyperplane , affine transformation , spheres , fixed point , combinatorics , pure mathematics , affine space , duality (order theory) , euler characteristic , fixed point theorem , mathematical analysis , physics , astronomy
We establish a variant for spheres of results obtained in \cite{HK}, \cite{BBK} for affine space. The principal result, that, if $m$ is a power of $2$ and $k\geq 1$, then $km$ continuous densities on the unit sphere in $\mathbb R^{m+1}$ may be simultaneously bisected by a set of at most $k$ hyperplanes through the origin, is essentially equivalent to the main theorem of Hubard and Karasev in \cite{HK}. But the methods used, involving Euler classes of vector bundles over symmetric powers of real projective spaces and an `orbifold' fixed point theorem for involutions, are substantially different from those in \cite{HK}, \cite{BBK}.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom