
Metainferential Paraconsistency
Author(s) -
Bruno Da Ré,
Mariela Rubín,
Paula Teijeiro
Publication year - 2022
Publication title -
logic and logical philosophy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.416
H-Index - 10
eISSN - 2300-9802
pISSN - 1425-3305
DOI - 10.12775/llp.2022.008
Subject(s) - paraconsistent logic , negation , context (archaeology) , classical logic , computer science , transitive relation , epistemology , mathematics , theoretical computer science , philosophy , programming language , description logic , higher order logic , combinatorics , paleontology , biology
In this article, our aim is to take a step towards a full understanding of the notion of paraconsistency in the context of metainferential logics. Following the work initiated by Barrio et al. [2018], we will consider a metainferential logic to be paraconsistent whenever the metainferential version of Explosion (or meta-Explosion) is invalid. However, our contribution consists in modifying the definition of meta-Explosion by extending the standard framework and introducing a negation for inferences and metainferences. From this new perspective, Tarskian paraconsistent logics such as LP will not turn out to be metainferentially paraconsistent, in contrast to, for instance, non-transitive logics like ST. Finally, we will end up by defining a logic which is metainferentially paraconsistent at every level, and discussing whether this logic is uniform through translations.