
MATHEMATICAL MODEL OF INTERACTION OF MILLING KNIVES WITH SOIL
Author(s) -
Александр Акимов,
Александр Акимов,
Юрий Константинов,
Yuriy Konstantinov,
Борис Туровский,
Boris Turovskiy
Publication year - 2018
Publication title -
vestnik kazanskogo gosudarstvennogo agrarnogo universiteta
Language(s) - English
Resource type - Journals
ISSN - 2073-0462
DOI - 10.12737/article_5a5f06808b59a5.62332052
Subject(s) - rotation (mathematics) , kinematics , moment (physics) , mechanical engineering , mechanics , mathematics , geometry , engineering , physics , classical mechanics
As working units of tillage mills, both curved (L-shaped) blade knives and straight blade knives are used. The soil reactions to these working units depend on soil properties, geometric parameters of the working parts, parameters determining the modes of their operation and the angle of rotation of the working units. When constructing a mathematical model for the interaction of working parts with soil, all these factors must be taken into account, while striving to simplify the proposed model. Accounting for the dependence of force characteristics of the working units on the angle of their rotation is not an easy task, and in most cases it is solved with the help of specially set experiments. A mathematical model is proposed for the interaction of a direct lamellar milling knife with soil, which makes it possible to determine the components of the resulting soil reactions to such a knife, the total moment of these reactions, and the power consumed for cutting the soil, depending on the knife rotation angle. This model takes into account the geometry of the working unit through the radii of the hub and cutters, the angle of installation of the milling knife and its length. The operating mode of the knife is set by the kinematic coefficient, equal to the ratio of the circumferential velocity of the knife end to the speed of the translational motion of a mill, and the maximum relative depth of the milling knife in the soil. The constructed model makes it possible to determine the dependence of the maximum values of the considered power characteristics of the knife on the indicated geometric parameters and the parameters of the knife operating mode, which makes it possible to simplify experiments to determine the power characteristics of the cutter and significantly reduce its volume. This model can be used to select the optimal knife parameters. In addition, the proposed model can be used to calculate the power characteristics of the rack of a curved blade knife, which consumes a significant amount of energy during milling.