
METHODOLOGY IN DEFINITION OF CONROD BEARINGS LIFE OF HEAT-ENGINE
Author(s) -
I. Levanov,
I. Levanov,
Елена Анатольевна Задорожная,
Elena Zadorozhnaya,
Артём Дудников,
Artem Dudnikov
Publication year - 2016
Publication title -
vestnik brânskogo gosudarstvennogo tehničeskogo universiteta
Language(s) - English
Resource type - Journals
ISSN - 1999-8775
DOI - 10.12737/22168
Subject(s) - lubrication , lubricant , reynolds equation , bearing (navigation) , computation , crankshaft , mechanics , fluid bearing , materials science , tribology , lubrication theory , mechanical engineering , physics , mathematics , engineering , reynolds number , algorithm , astronomy , turbulence
The paper reports the sequence of the definition of bearings resource in a crank gear of heatengines. A brief description is given regarding the procedure for the computation of bearing hydromechanical properties in terms of hydrodynamic theory of lubrication and that of the procedure for the definition of an area of contact interaction. The input equations for the computation of dynamics and lubrication are: the equation for the field of hydrodynamic pressures in a lubrication layer separating random loaded surfaces (Reynolds equation); the equations set of plane motion of a shaft journal center; the heatbalance equation manifesting the equality of heat values mean in a cycle of load disseminated in a lubrication layer of a bearing and heat removed by lubricant flowing out in its faces. The procedure for the determination of an area of a contact interaction is developed in accordance with a molecular-mechanical theory of friction and a fatigue theory of wear according to I.V. Kragelsky. The extension of the area of a contact interaction (an area of the violation of a hydrodynamic mode of lubrication) in a slider bearing was defined in terms of the computation of the de-pendence of a minimum thickness in a lubrication layer of a bearing of a connecting rod upper head upon a rotation angle of a crankshaft. At the same time there were taken into account: the non-Newton’s properties of a lubricant; the presence of oil feeding sources on friction surfaces; possible deviations of friction surfaces from a regular form. The procedures presented at the given stage can be used for a comparative assessment of tribocouplings life in heatengines at an initial stage of designing.