z-logo
open-access-imgOpen Access
Study of Solvent Effect in 2, 5-DPAPMC Dye Using Different Solvent Polarity Parameters and Estimation of Dipole Moments
Author(s) -
J. Thipperudrappa
Publication year - 2017
Publication title -
mapana journal of sciences
Language(s) - English
Resource type - Journals
ISSN - 0975-3303
DOI - 10.12723/mjs.28.7
Subject(s) - polarizability , dipole , solvatochromism , polarity (international relations) , excited state , solvent , solvent effects , moment (physics) , chemistry , solvent polarity , ground state , cyclopentanone , computational chemistry , molecular physics , atomic physics , physics , molecule , organic chemistry , quantum mechanics , biochemistry , cell , catalysis
The solvent effect on absorption and fluorescence spectra of      a ketocyanine      dye 2,5-di[(E)-1-(4- dipropylaminophenyl)     methylidine]-1-cyclopentanone (2,5-DPAPMC) is analysed using Lippert-Mataga bulk polarity function, Reichardt’s microscopic solvent polarity parameter and Kamlet’s multipl e linear regression approach. The spectral properties better follows Reichardt’s microscopic solvent polarity parameter than Lippert-Mataga bulk polarity parameter. This indicates the presence of both general solute – solvent interactions and specific   interactions.   Kamlet’s multiple linear regression   approach indicates the major role of polarizability/dipolarity solvent influence than HBD and HBA. The spectral data in different solvents is used to estimate excited state dipole moment using theoretically determined ground state dipole moment. The excited state dipole moment of dye is found to be larger than its corresponding ground state dipole moment and, ground and excited state dipole moments are not parallel, but subtends an angle of 29 o .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here