z-logo
open-access-imgOpen Access
Performance Comparison of Non-Linear Median Filter Built on MLP-ANN and Conventional MLP-ANN: Using Improved Dataset Training in Micro-Cell Environment
Author(s) -
Virginia Chika Ebhota,
Viranjay M. Srivastava
Publication year - 2021
Publication title -
journal of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.185
H-Index - 35
eISSN - 2374-4367
pISSN - 1796-2021
DOI - 10.12720/jcm.16.11.508-515
Subject(s) - computer science , mean squared error , artificial neural network , correlation coefficient , regularization (linguistics) , standard deviation , multilayer perceptron , early stopping , pearson product moment correlation coefficient , artificial intelligence , linear model , pattern recognition (psychology) , algorithm , mathematics , machine learning , statistics
This research work explores the Levenberg- Marquardt training algorithm used for Artificial Neural Network (ANN) optimization during training and the Bayesian Regularization algorithm for the enhanced generalized trained network in training a designed non-linear vector median filter built on Multi-Layer Perceptron (MLP) ANN called model-1 and a conventional MLP ANN called model-2. The model-1 employed in the design helps in dataset de-noising to ensure the removal of unwanted signals for the improved training dataset. An early stopping method in the ratio of 80:10:10 for training, testing, and validation to overcome the problem of over-fitting during network training was employed. First-order statistical indices, the standard deviation, root mean squared error, mean absolute error, and correlation coefficient were adopted for network training analysis and comparative analysis of the designed model-1 and model-2, respectively. Two locations, Line-of-sight (location-1) and non-Line-of-Sight (location-2), were considered where the dataset was captured. The training results from the two locations for the two models demonstrated improved prediction of signal power loss using model-1 in comparison to model-2. For instance, the correlation coefficient, which shows the strength of the predicted value to the measured values (closer to 1) establishing a strong connection, gives 0.990 and 0.995 using model-1 for location-1, training with Lavenberg-Marquardt and Bayesian Regularization algorithm, respectively and 0.965 and 0.980 for model-2 using the same algorithms. It is seen that the Bayesian regularization algorithm, which optimizes the network in accordance with the Levenberg- Marquardt algorithm, gave better prediction results. The same sequence of improved perditions using designed model-1 in comparison to model-2 were seen with training results in location-2 while also adopting other employed 1st order statistical indices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here