z-logo
open-access-imgOpen Access
An illustrated introduction to Caïssan squares: the magic of chess
Author(s) -
George P. H. Styan
Publication year - 2012
Publication title -
acta et commentationes universitatis tartuensis de mathematica./acta et commentationes universitatis tartuensis de mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.276
H-Index - 6
eISSN - 2228-4699
pISSN - 1406-2283
DOI - 10.12697/acutm.2012.16.07
Subject(s) - magic square , magic (telescope) , knight , art history , art , ursus , philosophy , mathematics , combinatorics , physics , sociology , astronomy , demography , population
We study various properties of n × n Caïssan magic squares. Following the seminal 1881 article by "Ursus" [Henry James Kesson (b. c. 1844)] in The Queen, we define a magic square to be Caïssan whenever it is pandiagonal and knight-Nasik so that all paths of length n by a chess bishop are magic (pandiagonal, Nasik, CSP1-magic) and by a (regular) chess knight are magic (CSP2-magic). We also study Caïssan beauties, which are pandiagonal and both CSP2- and CSP3-magic; a CSP3-path is by a special knight that leaps over 3 instead of 2 squares. Our paper ends with a bibliography of over 100 items (many with hyperlinks) listed chronologically from the 14th century onwards. We give special attention to items by (or connected with) "Ursus": Henry James Kesson (b. c. 1844), Andrew Hollingworth Frost (1819–1907), Charles Planck (1856–1935), and Pavle Bidev (1912–1988). We have tried to illustrate our findings as much as possible, and whenever feasible, with images of postage stamps or other philatelic items.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here