z-logo
open-access-imgOpen Access
Weak metric approximation properties and nice projections
Author(s) -
Trond A. Abrahamsen
Publication year - 2006
Publication title -
acta et commentationes universitatis tartuensis de mathematica
Language(s) - English
Resource type - Journals
eISSN - 2228-4699
pISSN - 1406-2283
DOI - 10.12697/acutm.2006.10.03
Subject(s) - projection (relational algebra) , banach space , mathematics , metric (unit) , space (punctuation) , norm (philosophy) , combinatorics , metric space , closure (psychology) , discrete mathematics , computer science , algorithm , operations management , political science , law , economics , operating system , market economy
We prove that a Banach space X has the weak MAP (the weak MCAP) [the very weak MCAP] if and only if there exists a norm one projection P on X∗∗ with X⊂P(X∗∗) such that P is in the weak∗-closure of F(X,X) (K(X,X)) [K(X,X∗∗)] in L(X∗∗,X∗∗).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom