
On the degree of approximation of functions of two variables by some operators
Author(s) -
L. Rempulska,
Mariola Skorupka
Publication year - 2005
Publication title -
acta et commentationes universitatis tartuensis de mathematica./acta et commentationes universitatis tartuensis de mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.276
H-Index - 6
eISSN - 2228-4699
pISSN - 1406-2283
DOI - 10.12697/acutm.2005.09.07
Subject(s) - baskakov operator , mathematics , degree (music) , operator theory , shift theorem , polynomial , type (biology) , spectral theorem , variable (mathematics) , bernstein polynomial , pure mathematics , microlocal analysis , discrete mathematics , mathematical analysis , fourier integral operator , danskin's theorem , brouwer fixed point theorem , physics , fixed point theorem , ecology , acoustics , biology
We introduce operators of Szász-Mirakyan and Baskakov type in polynomial weighted spaces of functions of two variables. We prove a theorem on the degree of approximation and a Voronovskaya type theorem for these operators. Similar results for Bernstein, Szász-Mirakyan and Baskakov operators of functions of one variable were given in [3-6].