On curvature tensors of non-symmetric affine connection
Author(s) -
Svetislav M. Minčić
Publication year - 2005
Publication title -
acta et commentationes universitatis tartuensis de mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.276
H-Index - 6
eISSN - 2228-4699
pISSN - 1406-2283
DOI - 10.12697/acutm.2005.09.03
Subject(s) - connection (principal bundle) , affine connection , curvature , pure mathematics , riemann curvature tensor , mathematics , affine transformation , curvature form , manifold (fluid mechanics) , differentiable function , ricci curvature , mathematical analysis , sectional curvature , scalar curvature , geometry , mechanical engineering , engineering
M. Prvanović [1], using polylinear mappings, has obtained four curvature tensors of non-symmetric affine connection on a differentiable manifold. In the present work we obtain eight new curvature tensors of this connection (Theorem 1) and prove that among these twelve curvature tensors only five are independent, and the others can be expressed in terms of them (Theorem 2).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom