Reparameterization and invariant covariance matrices of factors in linear models
Author(s) -
Tõnu Möls,
Tatyahtman
Publication year - 2004
Publication title -
acta et commentationes universitatis tartuensis de mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.276
H-Index - 6
eISSN - 2228-4699
pISSN - 1406-2283
DOI - 10.12697/acutm.2004.08.16
Subject(s) - eigenvalues and eigenvectors , covariance , mathematics , invariant (physics) , covariance matrix , permutation matrix , permutation (music) , random matrix , matrix (chemical analysis) , pure mathematics , combinatorics , statistics , mathematical physics , physics , circulant matrix , materials science , composite material , quantum mechanics , acoustics
Let the vector ζ consist of sampled random elements of factors in a linear mixed model. Let P be a permutation matrix. The covariance matrix D(ζ) is called P-invariant if D(ζ)=D(Pζ). It will be demonstrated that there is a strong correspondence between the spectrum of D(ζ) and certain reparametrization conditions on the factors. In particular, the classical reparametrization condition ∑ζi=0 has a clear presentation through the eigenvalues of D(ζ). This correspondence is useful for modelling data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom