z-logo
open-access-imgOpen Access
K-way Balanced Graph Partitioning for Parallel Computing
Author(s) -
Siddheshwar V. Patil,
D.B. Kulkarni
Publication year - 2021
Publication title -
scalable computing. practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.192
H-Index - 18
ISSN - 1895-1767
DOI - 10.12694/scpe.v22i4.1948
Subject(s) - computer science , graph partition , partition (number theory) , load balancing (electrical power) , parallel computing , graph , supercomputer , node (physics) , theoretical computer science , distributed computing , mathematics , combinatorics , grid , geometry , structural engineering , engineering
In modern computing, high-performance computing (HPC) and parallel computing require most of the decision-making in terms of distributing the payloads (input) uniformly across the available set of resources, majorly processors; the former deals with the hardware and its better utilization. In parallel computing, a larger, complex problem is broken down into multiple smaller calculations and executed simultaneously on several processors. The efficient use of resources (processors) plays a vital role in achieving the maximum throughput which necessitates uniform load distribution across available processors, i.e. load balancing. The load balancing in parallel computing is modeled as a graph partitioning problem. In the graph partitioning problem, the weighted nodes represent the computing cost at each node, and the weighted edges represent the communication cost between the connected nodes. The goal is to partition the graph G into k partitions such that: I) the sum of weights on the nodes is approximately equal for each partition, and, II) the sum of weights on the edges across different partitions is minimum.  In this paper, a novel node-weighted and edge-weighted k-way balanced graph partitioning (NWEWBGP) algorithm of  O(n x n)  is proposed. The algorithm works for all relevant values of k, meets or improves on earlier algorithms in terms of balanced partitioning and lowest edge-cut. For evaluation and validation, the outcome is compared with the ground truth benchmarks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here