z-logo
open-access-imgOpen Access
Kinetic Analysis of Double-Strand Break Rejoining Reveals the DNA Reparability of γ-Irradiated Tobacco Cultured Cells
Author(s) -
Yuichiro Yokota,
Seiichi Wada,
Yoshihiro Hase,
Tomoo Funayama,
Yasuhiko Kobayashi,
Issay Narumi,
Atsushi Tanaka
Publication year - 2009
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.08064
Subject(s) - protoplast , kinetics , irradiation , dna , biology , biophysics , microbiology and biotechnology , botany , biochemistry , physics , quantum mechanics , nuclear physics
The rejoining efficiency of double-strand breaks (DSBs) was quantified by a DNA fragment-size analysis in tobacco protoplasts and CHO-K1 cells following gamma-ray irradiation in order to compare DNA reparability of higher plants with mammals. Results showed that the DSB rejoining efficiency of tobacco protoplasts is dependent on the temperature of post-irradiation cultivation and that it reaches a maximum at 27 degrees C, which represents the most suitable temperature for protoplast cultivation. The DSB rejoining kinetics of tobacco protoplasts were well represented by a biphasic-exponential equation: half of initial-induced DSBs were rejoined for 1 h and the others were almost rejoined within 4 h. We found that the DSB rejoining kinetics of tobacco protoplasts at 27 degrees C are the same as those of CHO-K1 cells at 37 degrees C. These findings indicate that the DSB rejoining efficiency of tobacco protoplasts and CHO-K1 cells are comparable at their respective cell cultivation temperatures, suggesting that DSB rejoining efficiency is little responsible for the higher radiation-tolerance of tobacco protoplasts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom