z-logo
open-access-imgOpen Access
Temporal variation of surface chlorophyll a in the Romanian near-shore waters
Author(s) -
Dan Vasiliu,
Laura Boicenco,
Marian Traian Gomoiu,
Luminiţa Lazăr,
Maria Emanuela Mihailov
Publication year - 2012
Publication title -
mediterranean marine science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.734
H-Index - 38
eISSN - 1791-6763
pISSN - 1108-393X
DOI - 10.12681/mms.301
Subject(s) - bay , chlorophyll a , environmental science , hydrometeorology , seasonality , spring (device) , shore , phytoplankton , oceanography , chlorophyll , atmospheric sciences , climatology , zoology , nutrient , biology , geography , precipitation , geology , ecology , meteorology , botany , physics , thermodynamics
Chlorophyll a (Chl a) dynamics in the near-shore waters of the NW Black Sea was investigated between 2002 and 2010 in the Mamaia Bay (north of Constanta, Romania) in relation to some physical-chemical parameters. Chl a ranged from values below detection limit (0.17 μg.l–1) to 76.13 μg.l–1, and showed large temporal variability (CV = 142.3%), strongly related to the Danube’s discharges, meteorological conditions, and anthropogenic pressures. Seasonally, Chl a showed a winter/early spring maximum, sometimes followed by a stronger one in April/early May, closely linked to the Danube’s higher discharges in spring. After significantly lower concentrations in late spring/early summer, Chl a exhibited its strongest maximum in summer (July-August), followed by another one in autumn (late September–October). Interannual variation of Chl a seems to be controlled by the hydrometeorological conditions in summer. Thus, the highest annual Chl a means were observed in 2006 (8.56 ± 8.35 μg.l–1) and 2010 (9.20 ± 11.72 μg.l -1), when, also, the summer Chl a concentrations were maximal due to the large riverine discharges. The lowest annual Chl a mean was observed in 2004 (4.57 ± 9.81μg.l–1), closely linked to minimal summer Chl a resulted from a strong P limitation during summertime.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom