Open Access
Distributed earthquake focal mechanisms in the Aegean Sea
Author(s) -
Anastasia Kiratzi,
Christoforos Benetatos,
Zafeiria Roumelioti
Publication year - 2018
Publication title -
deltio tīs ellīnikīs geōlogikīs etaireias/deltio tīs ellīnikīs geōlogikīs etaireias
Language(s) - English
Resource type - Journals
eISSN - 2529-1718
pISSN - 0438-9557
DOI - 10.12681/bgsg.16842
Subject(s) - sinistral and dextral , geology , seismology , focal mechanism , tectonics , shearing (physics) , transform fault , trench , north anatolian fault , fault (geology) , slip (aerodynamics) , geodesy , thrust fault , chemistry , physics , geotechnical engineering , organic chemistry , layer (electronics) , thermodynamics
Nearly 2,000 earthquake focal mechanisms in the Aegean Sea and the surroundings for the period 1912- 2006, for 1.5 <M<7.5, and depths from 0 to 170 km, indicate a uniform distribution and smooth variation in orientation over wide regions, even for the very small magnitude earthquakes. ~ 60% of the focal mechanisms show normal faulting, that mainly strikes ~E-W. However, a zone ofN-S normal faulting runs the backbone of Albanides-Hellenides. Low-angle thrust and reverse faulting is confined in western Greece (Adria-Eurasia convergence) and along the Hellenic trench (Africa-Eurasia). In the central Aegean Sea the effect of the propagating tip of the North Anatolian Fault into the Aegean Sea is pronounced and strike-slip motions are widely distributed. Shearing does not cross central Greece. Strike-slip motions reappear in the Cephalonia-Lefkada Transform Fault zone and in western Péloponnèse, which shows very complex tectonics, with different types of faulting being oriented favourably and operating under the present stress-field. Moreover, in western Péloponnèse the sense of the observed shearing is not yet clear, whether it is dextral or sinistral, and this lack of data has significant implications for the orientation of the earthquake slip vectors compared to the GPS obtained velocity vectors.